Integration of the classical and molecular linkage maps of tomato chromosome 6.
نویسندگان
چکیده
In the past, a classical map of the tomato genome has been established that is based on linkage data from intraspecific Lycopersicon esculentum crosses. In addition, a high density molecular linkage map has recently been constructed using a L. esculentum x L. pennellii cross. As the respective maps only partially match, they provide limited information about the relative positions of classical and molecular markers. In this paper we describe the construction of an integrated linkage map of tomato chromosome 6 that shows the position of cDNA-, genomic DNA- and RAPD markers relative to 10 classical markers. Integration was achieved by using a L. esculentum line containing an introgressed chromosome 6 from L. pennellii in crosses to a variety of L. esculentum marker lines. In addition, an improved version of the classical linkage map is presented that is based on a combined analysis of new linkage data for 16 morphological markers and literature data. Unlike the classical map currently in use, the revised map reveals clustering of markers into three major groups around the yv, m-2 and c loci, respectively. Although crossing-over rates are clearly different when comparing intraspecific L. esculentum crosses with L. esculentum x L. pennellii crosses, the clusters of morphological markers on the classical map coincide with clusters of genomic- and cDNA-markers on the molecular map constructed by Tanksley and coworkers.
منابع مشابه
Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2.
We report the integration of the linkage map of tomato chromosome 2 with a high-density bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH)-based cytogenetic map. The euchromatic block of chromosome 2 resides between 13 and 142 cM and has a physical length of 48.12 microm, with 1 microm equivalent to 540 kb. BAC-FISH resolved a pair of loci that were 3.7-3.9 Mb apart a...
متن کاملHigh density molecular linkage maps of the tomato and potato genomes.
High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differenti...
متن کاملSNP Discovery and Linkage Map Construction in Cultivated Tomato
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lin...
متن کاملChromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato.
Potato (Solanum tuberosum) has the densest genetic linkage map and one of the earliest established cytogenetic maps among all plant species. However, there has been limited effort to integrate these maps. Here, we report fluorescence in situ hybridization (FISH) mapping of 30 genetic marker-anchored bacterial artificial chromosome (BAC) clones on the pachytene chromosome 6 of potato. The FISH m...
متن کاملDNA marker applications to molecular genetics and genomics in tomato
Tomato is an important crop and regarded as an experimental model of the Solanaceae family and of fruiting plants in general. To enhance breeding efficiency and advance the field of genetics, tomato has been subjected to DNA marker studies as one of the earliest targets in plants. The developed DNA markers have been applied to the construction of genetic linkage maps and the resultant maps have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 135 4 شماره
صفحات -
تاریخ انتشار 1993